organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Dichloroacetyl-3,3-dimethyl-2,6diphenylpiperidin-4-one

T. Kavitha,^a S. Ponnuswamy,^b M. Jamesh,^b J. Umamaheshwari^b and M. N. Ponnuswamy^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Chemistry. Government Arts College (Autonomous), Coimbatore 641 018, Tamil Nadu, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 14 November 2008; accepted 27 November 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.057; wR factor = 0.180; data-to-parameter ratio = 32.8.

In the title compound, $C_{21}H_{21}Cl_2NO_2$, the piperidine ring adopts a distorted boat conformation. The two phenyl rings are approximately perpendicular to each other, with a dihedral angle of 86.12 (7)°. Molecules are linked into centrosymmetric dimers by pairs of bifurcated C-H···O hydrogen bonds, forming $R_2^2(10)$ and $R_2^2(14)$ ring motifs, and an intramolecular $C-H \cdots O$ link also occurs.

Related literature

For general backround, see: Ponnuswamy et al. (2002). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For ring puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983). For hybridization, see: Beddoes et al. (1986).

Me Me 0=

Experimental

Crystal data

β

$C_{21}H_{21}Cl_2NO_2$	$\gamma = 79.029 \ (1)^{\circ}$
$M_r = 390.29$	V = 961.84 (4) Å ³
Triclinic, P1	Z = 2
a = 9.1084 (2) Å	Mo $K\alpha$ radiation
b = 10.8992 (3) Å	$\mu = 0.35 \text{ mm}^{-1}$
c = 10.9918 (3) Å	T = 293 (2) K
$\alpha = 63.879 \ (1)^{\circ}$	$0.30 \times 0.26 \times 0.20 \text{ mm}$
$\beta = 85.343 \ (2)^{\circ}$	

Data collection

Bruker Kappa APEXII areadetector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 2001) $T_{\min} = 0.902, T_{\max} = 0.933$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.057$	235 parameters
$wR(F^2) = 0.180$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.80 \ {\rm e} \ {\rm \AA}^{-3}$
7709 reflections	$\Delta \rho_{\rm min} = -0.73 \ {\rm e} \ {\rm \AA}^{-3}$

26977 measured reflections 7709 independent reflections

 $R_{\rm int} = 0.021$

5516 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C14-H14···O2	0.93	2.57	3.250 (2)	130
$C2-H2\cdots O2^i$	0.98	2.50	3.4264 (18)	158
$C16-H16A\cdots O2^{i}$	0.96	2.54	3.413 (2)	151

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

TK thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2724).

References

Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.

Ponnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614-627.

Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2009). E65, o10 [doi:10.1107/S1600536808040051]

1-Dichloroacetyl-3,3-dimethyl-2,6-diphenylpiperidin-4-one

T. Kavitha, S. Ponnuswamy, M. Jamesh, J. Umamaheshwari and M. N. Ponnuswamy

Comment

The design and synthesis of conformationally anchored molecules are important due its potency and selectivity for designing drugs. The piperidin-4-ones are one such class of compounds to be investigated to understand the stereodynamics and other structural features (Ponnuswamy *et al.*, 2002).

The sum of bond angles around atom N1 (359.6°) indicates sp^2 hybridization (Beddoes *et al.*, 1986). The N1—C7 [1.3564 (16) Å] and C7—O2 [1.2149 (17) Å] distances indicate electron delocalization. The piperidine ring adopts a distorted boat conformation, with puckering parameters (Cremer & Pople, 1975) q2 = 0.638 (1) Å, q3 = -0.067 (2) Å and φ_2 = 253.4 (1)°, and the asymmetry parameters $\Delta C_s(C2)$ = 14.4 (1)° (Nardelli, 1983). The best plane through the piperidine ring, N1/C3/C4/C6, forms dihedral angles of 89.31 (6)° and 63.47 (7)°, respectively, with the C9—C4 and C17—C22 phenyl rings. The two phenyl rings are approximately perpendicular to each other, with a dihedral angle of 86.12 (7)°.

The crystal structure is stabilized by intermolecular C—H···O hydrogen bonds. Each atoms C2 and C16 at (x, y, z) donate one proton to bifurcated acceptor O2 at (-x, 1 - y, 1 - z), forming a centrosymmetric dimer (Fig. 2) with $R_2^2(10)$ and $R_2^2(14)$ ring motifs (Bernstein *et al.*, 1995).

Experimental

A mixture of 3,3-dimethyl-*cis*-2,6-diphenylpiperidin-4-one (1.4 g, 5 mmol), dichloroacetylchloride (1 ml, 10 mmol) and triethylamine (2 ml, 14.4 mmol) in anhydrous benzene (20 ml) was stirred at room temperature for 7 h. The benzene solution was dried over anhydrous Na₂SO₄ and concentrated. The pasty mass obtained was purified by crystallization from benzene-petroleum ether (333–353 K) in the ratio of 95:5.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and $1.2U_{eq}(C)$ for other H atoms.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) dimers. Atom H16A and H atoms not involved in hydrogen bonding have been omitted.

1-Dichloroacetyl-3,3-dimethyl-2,6-diphenylpiperidin-4-one

Z = 2
$F_{000} = 408$
$D_{\rm x} = 1.348 {\rm Mg m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 7709 reflections
$\theta = 2.1 - 34.0^{\circ}$
$\mu = 0.35 \text{ mm}^{-1}$
T = 293 (2) K
Block, colourless
$0.30 \times 0.26 \times 0.20 \text{ mm}$

Data collection

Bruker Kappa APEXII area-detector diffractometer	7709 independent reflections
Radiation source: fine-focus sealed tube	5516 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 293(2) K	$\theta_{\text{max}} = 34.0^{\circ}$
ω and ϕ scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -14 \rightarrow 14$
$T_{\min} = 0.902, \ T_{\max} = 0.933$	$k = -16 \rightarrow 17$
26977 measured reflections	$l = -17 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters constrained
$wR(F^2) = 0.180$	$w = 1/[\sigma^2(F_o^2) + (0.0854P)^2 + 0.3205P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
7709 reflections	$\Delta \rho_{max} = 0.80 \text{ e} \text{ Å}^{-3}$
235 parameters	$\Delta \rho_{\rm min} = -0.73 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C2	0.16315 (15)	0.26040 (13)	0.64530 (13)	0.0320 (2)
H2	0.1059	0.3371	0.5691	0.038*
C3	0.07185 (16)	0.14160 (15)	0.69561 (15)	0.0363 (3)
C4	0.12824 (17)	0.02567 (15)	0.83179 (16)	0.0394 (3)
C5	0.22508 (18)	0.06135 (14)	0.91179 (15)	0.0392 (3)
H5A	0.3283	0.0437	0.8854	0.047*
H5B	0.2169	-0.0007	1.0070	0.047*
C6	0.18871 (15)	0.21096 (13)	0.89554 (13)	0.0315 (2)
Н6	0.0976	0.2204	0.9469	0.038*
C7	0.11626 (15)	0.44855 (13)	0.71233 (13)	0.0330 (2)
C8	0.06652 (16)	0.49415 (14)	0.82515 (15)	0.0369 (3)
H8	0.1194	0.4282	0.9094	0.044*
C9	0.32045 (16)	0.23856 (15)	0.59084 (14)	0.0362 (3)
C10	0.4137 (2)	0.11132 (19)	0.62714 (19)	0.0521 (4)
H10	0.3796	0.0306	0.6872	0.062*
C11	0.5572 (2)	0.1029 (3)	0.5750 (2)	0.0641 (5)
H11	0.6186	0.0167	0.6012	0.077*
C12	0.6095 (2)	0.2197 (3)	0.4854 (2)	0.0646 (5)
H12	0.7062	0.2136	0.4516	0.078*
C13	0.5178 (3)	0.3460 (3)	0.4460 (2)	0.0683 (6)
H13	0.5521	0.4258	0.3842	0.082*
C14	0.3742 (2)	0.35549 (19)	0.49753 (19)	0.0522 (4)
H14	0.3129	0.4419	0.4690	0.063*
C15	0.0667 (2)	0.0880 (2)	0.5892 (2)	0.0554 (4)
H15A	0.0305	0.1640	0.5050	0.083*
H15B	0.0010	0.0210	0.6192	0.083*
H15C	0.1654	0.0452	0.5765	0.083*
C16	-0.09026 (17)	0.19822 (18)	0.72274 (18)	0.0458 (3)
H16A	-0.1334	0.2725	0.6403	0.069*
H16B	-0.0895	0.2320	0.7899	0.069*
H16C	-0.1485	0.1252	0.7549	0.069*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C17	0.31594 (16)	0.23865 (14)	0.95568 (15)	0.0377 (3)	
C18	0.4438 (2)	0.2760 (2)	0.8816 (2)	0.0564 (4)	
H18	0.4525	0.2854	0.7932	0.068*	
C19	0.5588 (3)	0.2993 (3)	0.9398 (3)	0.0812 (8)	
H19	0.6448	0.3239	0.8903	0.097*	
C20	0.5464 (3)	0.2865 (3)	1.0703 (3)	0.0855 (9)	
H20	0.6232	0.3041	1.1080	0.103*	
C21	0.4221 (3)	0.2479 (3)	1.1444 (3)	0.0749 (7)	
H21	0.4148	0.2384	1.2329	0.090*	
C22	0.3049 (2)	0.22256 (19)	1.08834 (19)	0.0523 (4)	
H22	0.2206	0.1952	1.1396	0.063*	
Cl1	0.09918 (6)	0.66177 (5)	0.78274 (6)	0.06072 (15)	
Cl2	-0.12724 (6)	0.49086 (7)	0.84645 (7)	0.07096 (18)	
N1	0.16105 (12)	0.31050 (11)	0.75154 (11)	0.0301 (2)	
01	0.09414 (17)	-0.08818 (13)	0.87624 (15)	0.0596 (4)	
02	0.10590 (15)	0.53523 (11)	0.59509 (11)	0.0479 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0360 (6)	0.0327 (5)	0.0303 (5)	-0.0091 (5)	0.0005 (4)	-0.0151 (5)
C3	0.0389 (7)	0.0372 (6)	0.0392 (6)	-0.0133 (5)	0.0001 (5)	-0.0198 (5)
C4	0.0407 (7)	0.0324 (6)	0.0470 (7)	-0.0117 (5)	0.0009 (6)	-0.0170 (5)
C5	0.0463 (7)	0.0291 (6)	0.0386 (7)	-0.0096 (5)	-0.0051 (6)	-0.0094 (5)
C6	0.0327 (6)	0.0314 (5)	0.0299 (5)	-0.0085 (4)	-0.0015 (4)	-0.0113 (4)
C7	0.0356 (6)	0.0300 (5)	0.0337 (6)	-0.0068 (5)	-0.0007 (5)	-0.0134 (5)
C8	0.0397 (7)	0.0334 (6)	0.0399 (7)	-0.0043 (5)	-0.0015 (5)	-0.0186 (5)
C9	0.0390 (7)	0.0403 (6)	0.0343 (6)	-0.0114 (5)	0.0046 (5)	-0.0196 (5)
C10	0.0480 (9)	0.0468 (8)	0.0557 (9)	-0.0050 (7)	0.0120 (7)	-0.0203 (7)
C11	0.0477 (10)	0.0720 (13)	0.0679 (12)	0.0016 (9)	0.0097 (9)	-0.0323 (10)
C12	0.0434 (9)	0.0902 (16)	0.0660 (12)	-0.0188 (10)	0.0178 (8)	-0.0393 (11)
C13	0.0647 (12)	0.0741 (13)	0.0692 (13)	-0.0349 (11)	0.0304 (10)	-0.0298 (11)
C14	0.0571 (10)	0.0460 (8)	0.0521 (9)	-0.0181 (7)	0.0171 (8)	-0.0193 (7)
C15	0.0692 (12)	0.0611 (10)	0.0551 (10)	-0.0264 (9)	0.0026 (8)	-0.0368 (9)
C16	0.0356 (7)	0.0511 (8)	0.0496 (8)	-0.0138 (6)	-0.0013 (6)	-0.0183 (7)
C17	0.0371 (6)	0.0323 (6)	0.0439 (7)	-0.0035 (5)	-0.0108 (5)	-0.0158 (5)
C18	0.0418 (8)	0.0620 (11)	0.0710 (12)	-0.0179 (7)	-0.0038 (8)	-0.0296 (9)
C19	0.0471 (11)	0.0829 (16)	0.128 (2)	-0.0202 (10)	-0.0174 (12)	-0.0520 (16)
C20	0.0652 (14)	0.0734 (14)	0.136 (2)	0.0039 (11)	-0.0552 (16)	-0.0588 (16)
C21	0.0874 (16)	0.0676 (12)	0.0810 (14)	0.0157 (11)	-0.0504 (13)	-0.0454 (11)
C22	0.0588 (10)	0.0522 (9)	0.0486 (9)	0.0007 (7)	-0.0185 (7)	-0.0254 (7)
Cl1	0.0769 (3)	0.0499 (2)	0.0729 (3)	-0.0258 (2)	0.0075 (2)	-0.0378 (2)
Cl2	0.0479 (3)	0.0867 (4)	0.1055 (5)	-0.0242 (2)	0.0255 (3)	-0.0656 (4)
N1	0.0339 (5)	0.0282 (4)	0.0290 (5)	-0.0072 (4)	-0.0003 (4)	-0.0124 (4)
01	0.0717 (9)	0.0355 (5)	0.0709 (8)	-0.0231 (6)	-0.0097 (7)	-0.0151 (6)
O2	0.0706 (8)	0.0324 (5)	0.0350 (5)	-0.0071 (5)	-0.0009 (5)	-0.0102 (4)

Geometric parameters (Å, °)

C2—N1	1 4886 (17)	C11—C12	1 367 (3)
$C_2 = C_2$	1 525 (2)	C11—H11	0.93
C2—C3	1.5424 (19)	C12—C13	1.369 (3)
С2—Н2	0.98	C12—H12	0.93
C3—C4	1.521 (2)	C13—C14	1.387 (3)
C3—C15	1.528 (2)	С13—Н13	0.93
C3—C16	1.547 (2)	C14—H14	0.93
C4—O1	1.2096 (18)	C15—H15A	0.96
C4—C5	1.503 (2)	C15—H15B	0.96
C5—C6	1.5324 (19)	C15—H15C	0.96
С5—Н5А	0.97	C16—H16A	0.96
С5—Н5В	0.97	C16—H16B	0.96
C6—N1	1.4814 (16)	C16—H16C	0.96
C6—C17	1.5179 (18)	C17—C18	1.385 (3)
С6—Н6	0.98	C17—C22	1.387 (2)
C7—O2	1.2149 (17)	C18—C19	1.387 (3)
C7—N1	1.3564 (16)	C18—H18	0.93
С7—С8	1.535 (2)	C19—C20	1.375 (4)
C8—C11	1.7544 (15)	С19—Н19	0.93
C8—C12	1.7664 (16)	C20—C21	1.361 (4)
С8—Н8	0.98	C20—H20	0.93
C9—C14	1.386 (2)	C21—C22	1.401 (3)
C9—C10	1.387 (2)	C21—H21	0.93
010 011	1 200 (2)	600 TT00	0.00
C10-C11	1.388 (3)	С22—Н22	0.93
C10—C11 C10—H10	0.93	С22—Н22	0.93
C10—C11 C10—H10 N1—C2—C9	1.388 (3) 0.93 111.62 (11)	C22—H22 C10—C11—H11	0.93
C10—C11 C10—H10 N1—C2—C9 N1—C2—C3	1.388 (3) 0.93 111.62 (11) 108.79 (10)	C22—H22 C10—C11—H11 C11—C12—C13	0.93 119.6 119.27 (18)
C10—C11 C10—H10 N1—C2—C9 N1—C2—C3 C9—C2—C3	1.388 (3) 0.93 111.62 (11) 108.79 (10) 119.05 (12)	C10-C11-H11 C11-C12-C13 C11-C12-H12	0.93 119.6 119.27 (18) 120.4
C10—C11 C10—H10 N1—C2—C9 N1—C2—C3 C9—C2—C3 N1—C2—H2	1.388 (3) 0.93 111.62 (11) 108.79 (10) 119.05 (12) 105.4	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12	0.93 119.6 119.27 (18) 120.4 120.4
C10—C11 C10—H10 N1—C2—C9 N1—C2—C3 C9—C2—C3 N1—C2—H2 C9—C2—H2	1.388 (3) 0.93 111.62 (11) 108.79 (10) 119.05 (12) 105.4 105.4	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C13—C14	0.93 119.6 119.27 (18) 120.4 120.4 120.42 (19)
C10—C11 C10—H10 N1—C2—C9 N1—C2—C3 C9—C2—C3 N1—C2—H2 C9—C2—H2 C3—C2—H2	1.388 (3) 0.93 111.62 (11) 108.79 (10) 119.05 (12) 105.4 105.4 105.4	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13	0.93 119.6 119.27 (18) 120.4 120.4 120.42 (19) 119.8
C10—C11 C10—H10 N1—C2—C9 N1—C2—C3 C9—C2—C3 N1—C2—H2 C9—C2—H2 C3—C2—H2 C4—C3—C15	1.388 (3) 0.93 111.62 (11) 108.79 (10) 119.05 (12) 105.4 105.4 105.4 105.4 112.03 (13)	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13	0.93 119.6 119.27 (18) 120.4 120.4 120.42 (19) 119.8 119.8
C10—C11 C10—H10 N1—C2—C9 N1—C2—C3 C9—C2—C3 N1—C2—H2 C9—C2—H2 C3—C2—H2 C3—C2—H2 C4—C3—C15 C4—C3—C2	1.388 (3) 0.93 111.62 (11) 108.79 (10) 119.05 (12) 105.4 105.4 105.4 105.4 112.03 (13) 111.80 (11)	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C9—C14—C13	0.93 119.6 119.27 (18) 120.4 120.4 120.42 (19) 119.8 119.8 121.16 (18)
C10—C11 C10—H10 N1—C2—C9 N1—C2—C3 C9—C2—C3 N1—C2—H2 C9—C2—H2 C3—C2—H2 C4—C3—C15 C4—C3—C2 C15—C3—C2	1.388 (3) 0.93 111.62 (11) 108.79 (10) 119.05 (12) 105.4 105.4 105.4 112.03 (13) 111.80 (11) 111.26 (13)	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C9—C14—C13 C9—C14—C13 C9—C14—H14	0.93 119.6 119.27 (18) 120.4 120.4 120.42 (19) 119.8 119.8 121.16 (18) 119.4
C10—C11 C10—H10 N1—C2—C9 N1—C2—C3 C9—C2—C3 N1—C2—H2 C9—C2—H2 C3—C2—H2 C4—C3—C15 C4—C3—C2 C15—C3—C2 C4—C3—C16	1.388 (3) 0.93 111.62 (11) 108.79 (10) 119.05 (12) 105.4 105.4 105.4 112.03 (13) 111.80 (11) 111.26 (13) 104.84 (12)	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C9—C14—C13 C9—C14—H14 C13—C14—H14	0.93 119.6 119.27 (18) 120.4 120.42 (19) 119.8 119.8 121.16 (18) 119.4 119.4
C10C11 $C10H10$ $N1C2C3$ $C9C2C3$ $N1C2H2$ $C9C2H2$ $C3C2H2$ $C4C3C15$ $C4C3C2$ $C15C3C2$ $C4C3C16$ $C15C3C16$	1.388 (3) 0.93 111.62 (11) 108.79 (10) 119.05 (12) 105.4 105.4 105.4 112.03 (13) 111.80 (11) 111.26 (13) 104.84 (12) 108.17 (14)	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C9—C14—C13 C9—C14—H14 C13—C14—H14 C3—C15—H15A	0.93 119.6 119.27 (18) 120.4 120.4 120.42 (19) 119.8 119.8 121.16 (18) 119.4 119.4 109.5
C10-C11 C10-H10 N1-C2-C9 N1-C2-C3 C9-C2-C3 N1-C2-H2 C9-C2-H2 C3-C2-H2 C4-C3-C15 C4-C3-C15 C4-C3-C2 C15-C3-C2 C4-C3-C16 C15-C3-C16 C2-C3-C16	1.388 (3) 0.93 111.62 (11) 108.79 (10) 119.05 (12) 105.4 105.4 105.4 112.03 (13) 111.80 (11) 111.26 (13) 104.84 (12) 108.17 (14) 108.41 (12)	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C9—C14—C13 C9—C14—H14 C13—C14—H14 C13—C14—H14 C3—C15—H15A C3—C15—H15B	0.93 119.6 119.27 (18) 120.4 120.4 120.42 (19) 119.8 119.8 121.16 (18) 119.4 119.4 109.5 109.5
C10-C11 $C10-H10$ $N1-C2-C9$ $N1-C2-C3$ $C9-C2-C3$ $N1-C2-H2$ $C9-C2-H2$ $C3-C2-H2$ $C4-C3-C15$ $C4-C3-C2$ $C15-C3-C2$ $C4-C3-C16$ $C15-C3-C16$ $C15-C3-C16$ $C2-C3-C16$ $C2-C3-C16$ $O1-C4-C5$	1.388 (3) 0.93 111.62 (11) 108.79 (10) 119.05 (12) 105.4 105.4 105.4 112.03 (13) 111.80 (11) 111.26 (13) 104.84 (12) 108.17 (14) 108.41 (12) 121.20 (14)	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C9—C14—C13 C9—C14—H14 C13—C14—H14 C13—C15—H15B H15A—C15—H15B	0.93 119.6 119.27 (18) 120.4 120.4 120.42 (19) 119.8 119.8 121.16 (18) 119.4 109.5 109.5 109.5
C10C11 $C10H10$ $N1C2C3$ $C9C2C3$ $N1C2H2$ $C9C2H2$ $C3C2H2$ $C4C3C15$ $C4C3C2$ $C15C3C2$ $C4C3C16$ $C15C3C16$ $C2C3C16$ $C2C3C16$ $O1C4C5$ $O1C4C5$ $O1C4C3$	$\begin{array}{c} 1.388 (3) \\ 0.93 \\ 111.62 (11) \\ 108.79 (10) \\ 119.05 (12) \\ 105.4 \\ 105.4 \\ 105.4 \\ 105.4 \\ 112.03 (13) \\ 111.80 (11) \\ 111.26 (13) \\ 104.84 (12) \\ 108.17 (14) \\ 108.41 (12) \\ 121.20 (14) \\ 122.41 (14) \end{array}$	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C9—C14—C13 C9—C14—H14 C13—C14—H14 C13—C14—H14 C3—C15—H15A C3—C15—H15B H15A—C15—H15B C3—C15—H15C	0.93 119.6 119.27 (18) 120.4 120.42 (19) 119.8 121.16 (18) 119.4 119.4 109.5 109.5 109.5 109.5
C10C11 $C10H10$ $N1C2C3$ $C9C2C3$ $N1C2H2$ $C9C2H2$ $C3C2H2$ $C4C3C15$ $C4C3C2$ $C4C3C16$ $C15C3C16$ $C15C3C16$ $C1C4C5$ $O1C4C3$ $C5C4C3$	$\begin{array}{c} 1.388 (3) \\ 0.93 \\ 111.62 (11) \\ 108.79 (10) \\ 119.05 (12) \\ 105.4 \\ 105.4 \\ 105.4 \\ 105.4 \\ 112.03 (13) \\ 111.80 (11) \\ 111.26 (13) \\ 104.84 (12) \\ 108.17 (14) \\ 108.41 (12) \\ 121.20 (14) \\ 122.41 (14) \\ 116.35 (11) \end{array}$	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C9—C14—C13 C9—C14—H14 C13—C14—H14 C13—C14—H14 C3—C15—H15A C3—C15—H15B H15A—C15—H15C H15A—C15—H15C	0.93 119.6 119.27 (18) 120.4 120.4 120.42 (19) 119.8 119.8 121.16 (18) 119.4 119.4 109.5 109.5 109.5 109.5 109.5
C10C11 $C10H10$ $N1C2C9$ $N1C2C3$ $C9C2C3$ $N1C2H2$ $C3C2H2$ $C3C2H2$ $C4C3C15$ $C4C3C16$ $C15C3C16$ $C15C3C16$ $C15C3C16$ $C15C3C16$ $C1C4C3$ $C5C4C3$ $C4C5C6$	$\begin{array}{c} 1.388 (3) \\ 0.93 \\ 111.62 (11) \\ 108.79 (10) \\ 119.05 (12) \\ 105.4 \\ 105.4 \\ 105.4 \\ 105.4 \\ 112.03 (13) \\ 111.80 (11) \\ 111.26 (13) \\ 104.84 (12) \\ 108.17 (14) \\ 108.41 (12) \\ 121.20 (14) \\ 122.41 (14) \\ 116.35 (11) \\ 115.68 (12) \end{array}$	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C9—C14—C13 C9—C14—H14 C13—C14—H14 C3—C15—H15A C3—C15—H15B H15A—C15—H15B C3—C15—H15C H15A—C15—H15C H15B—C15—H15C	0.93 119.6 119.27 (18) 120.4 120.4 120.42 (19) 119.8 119.8 121.16 (18) 119.4 109.5 109.5 109.5 109.5 109.5 109.5
C10C11 $C10H10$ $N1C2C9$ $N1C2C3$ $C9C2C3$ $N1C2H2$ $C3C2H2$ $C4C3C15$ $C4C3C2$ $C4C3C16$ $C15C3C16$ $C15C3C16$ $C15C3C16$ $C1C4C5$ $O1C4C5$ $O1C4C3$ $C5C4C3$ $C4C5C6$ $C4C5H5A$	$\begin{array}{c} 1.388 (3) \\ 0.93 \\ 111.62 (11) \\ 108.79 (10) \\ 119.05 (12) \\ 105.4 \\ 105.4 \\ 105.4 \\ 105.4 \\ 112.03 (13) \\ 111.80 (11) \\ 111.26 (13) \\ 104.84 (12) \\ 108.17 (14) \\ 108.41 (12) \\ 121.20 (14) \\ 122.41 (14) \\ 116.35 (11) \\ 115.68 (12) \\ 108.4 \end{array}$	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C9—C14—C13 C9—C14—H14 C13—C14—H14 C3—C15—H15A C3—C15—H15B H15A—C15—H15B H15A—C15—H15C H15B—C15—H15C C3—C16—H16A	0.93 119.6 119.27 (18) 120.4 120.4 (19) 119.8 119.8 121.16 (18) 119.4 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C10C11 $C10H10$ $N1C2C3$ $C9C2C3$ $N1C2H2$ $C9C2H2$ $C3C2H2$ $C4C3C15$ $C4C3C2$ $C4C3C16$ $C15C3C16$ $C15C3C16$ $C2C3C16$ $C1C4C3$ $C5C4C3$ $C4C5C6$ $C4C5H5A$ $C6C5H5A$	$\begin{array}{c} 1.388 (3) \\ 0.93 \\ 111.62 (11) \\ 108.79 (10) \\ 119.05 (12) \\ 105.4 \\ 105.4 \\ 105.4 \\ 105.4 \\ 112.03 (13) \\ 111.80 (11) \\ 111.26 (13) \\ 104.84 (12) \\ 108.17 (14) \\ 108.41 (12) \\ 122.41 (14) \\ 116.35 (11) \\ 115.68 (12) \\ 108.4 \\ 108.4 \\ 108.4 \end{array}$	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C9—C14—C13 C9—C14—H14 C13—C14—H14 C3—C15—H15A C3—C15—H15B H15A—C15—H15B H15A—C15—H15C H15B—C15—H15C H15B—C15—H15C C3—C16—H16A C3—C16—H16B	0.93 119.6 119.27 (18) 120.4 120.4 120.42 (19) 119.8 121.16 (18) 119.4 119.4 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C10-C11 C10-H10 N1-C2-C9 N1-C2-C3 C9-C2-C3 N1-C2-H2 C9-C2-H2 C3-C2-H2 C4-C3-C15 C4-C3-C15 C4-C3-C2 C4-C3-C2 C4-C3-C16 C15-C3-C16 C15-C3-C16 C15-C3-C16 C15-C3-C16 O1-C4-C5 O1-C4-C3 C5-C4-C3 C4-C5-C6 C4-C5-H5A C6-C5-H5A C4-C5-H5B	$\begin{array}{c} 1.388 (3) \\ 0.93 \\ 111.62 (11) \\ 108.79 (10) \\ 119.05 (12) \\ 105.4 \\ 105.4 \\ 105.4 \\ 105.4 \\ 112.03 (13) \\ 111.80 (11) \\ 111.26 (13) \\ 104.84 (12) \\ 108.17 (14) \\ 108.41 (12) \\ 122.41 (14) \\ 116.35 (11) \\ 115.68 (12) \\ 108.4 \\ 108.4 \\ 108.4 \end{array}$	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C9—C14—C13 C9—C14—H14 C13—C14—H14 C13—C14—H14 C3—C15—H15A C3—C15—H15B H15A—C15—H15C H15A—C15—H15C H15B—C15—H15C H15B—C15—H15C C3—C16—H16B H16A—C16—H16B	0.93 119.6 119.27 (18) 120.4 120.4 120.42 (19) 119.8 119.8 121.16 (18) 119.4 109.5
C10-C11 C10-H10 N1-C2-C9 N1-C2-C3 C9-C2-C3 N1-C2-H2 C9-C2-H2 C3-C2-H2 C4-C3-C15 C4-C3-C15 C4-C3-C2 C15-C3-C2 C4-C3-C16 C15-C3-C16 C15-C3-C16 C15-C3-C16 C15-C3-C16 O1-C4-C5 O1-C4-C5 O1-C4-C3 C5-C4-C3 C4-C5-C6 C4-C5-H5A C6-C5-H5B C6-C5-H5B	$\begin{array}{c} 1.388 (3) \\ 0.93 \\ 111.62 (11) \\ 108.79 (10) \\ 119.05 (12) \\ 105.4 \\ 105.4 \\ 105.4 \\ 105.4 \\ 105.4 \\ 112.03 (13) \\ 111.80 (11) \\ 111.26 (13) \\ 104.84 (12) \\ 108.17 (14) \\ 108.41 (12) \\ 122.41 (14) \\ 116.35 (11) \\ 115.68 (12) \\ 108.4 \\ 108.4 \\ 108.4 \\ 108.4 \\ 108.4 \end{array}$	C22—H22 C10—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C9—C14—C13 C9—C14—C13 C9—C14—H14 C13—C14—H14 C3—C15—H15A C3—C15—H15B H15A—C15—H15C H15A—C15—H15C H15B—C15—H15C H15B—C15—H15C C3—C16—H16B H16A—C16—H16B C3—C16—H16B	0.93 119.6 119.27 (18) 120.4 120.4 120.42 (19) 119.8 119.8 121.16 (18) 119.4 109.5

supplementary materials

N1—C6—C17	112.02 (11)	H16B—C16—H16C	109.5
N1—C6—C5	110.99 (11)	C18—C17—C22	119.73 (16)
C17—C6—C5	108.73 (11)	C18—C17—C6	121.13 (14)
N1—C6—H6	108.3	C22—C17—C6	119.12 (15)
С17—С6—Н6	108.3	C17—C18—C19	119.8 (2)
С5—С6—Н6	108.3	C17—C18—H18	120.1
O2—C7—N1	124.28 (13)	C19—C18—H18	120.1
O2—C7—C8	119.02 (12)	C20-C19-C18	120.5 (3)
N1—C7—C8	116.59 (11)	С20—С19—Н19	119.8
C7—C8—Cl1	111.99 (10)	С18—С19—Н19	119.8
C7—C8—Cl2	106.14 (10)	C21—C20—C19	120.06 (19)
Cl1—C8—Cl2	109.75 (8)	C21—C20—H20	120.0
С7—С8—Н8	109.6	С19—С20—Н20	120.0
Cl1—C8—H8	109.6	C20—C21—C22	120.6 (2)
Cl2—C8—H8	109.6	C20-C21-H21	119.7
C14—C9—C10	117.55 (15)	C22—C21—H21	119.7
C14—C9—C2	117.21 (14)	C17—C22—C21	119.4 (2)
C10—C9—C2	125.24 (13)	С17—С22—Н22	120.3
C9—C10—C11	120.81 (18)	C21—C22—H22	120.3
C9—C10—H10	119.6	C7—N1—C6	122.10 (11)
C11-C10-H10	119.6	C7—N1—C2	116.79 (10)
C12—C11—C10	120.7 (2)	C6—N1—C2	120.69 (10)
C12—C11—H11	119.6		
N1—C2—C3—C4	-55.28 (15)	C11—C12—C13—C14	0.8 (4)
C9—C2—C3—C4	74.08 (15)	C10-C9-C14-C13	-2.2 (3)
N1—C2—C3—C15	178.63 (13)	C2—C9—C14—C13	177.88 (18)
C9—C2—C3—C15	-52.01 (18)	C12—C13—C14—C9	0.7 (3)
N1—C2—C3—C16	59.80 (14)	N1-C6-C17-C18	-39.86 (19)
C9—C2—C3—C16	-170.84 (12)	C5—C6—C17—C18	83.18 (17)
C15—C3—C4—O1	-38.8 (2)	N1-C6-C17-C22	141.83 (14)
C2—C3—C4—O1	-164.51 (16)	C5—C6—C17—C22	-95.13 (16)
C16—C3—C4—O1	78.24 (19)	C22-C17-C18-C19	-1.1 (3)
C15—C3—C4—C5	143.33 (15)	C6—C17—C18—C19	-179.38 (18)
C2—C3—C4—C5	17.66 (18)	C17—C18—C19—C20	-0.4 (4)
C16—C3—C4—C5	-99.59 (15)	C18-C19-C20-C21	1.3 (4)
O1—C4—C5—C6	-144.98 (16)	C19—C20—C21—C22	-0.7 (4)
C3—C4—C5—C6	32.88 (19)	C18—C17—C22—C21	1.6 (3)
C4—C5—C6—N1	-43.61 (17)	C6—C17—C22—C21	179.98 (15)
C4—C5—C6—C17	-167.26 (13)	C20-C21-C22-C17	-0.7 (3)
O2—C7—C8—Cl1	-33.06 (17)	O2—C7—N1—C6	172.74 (13)
N1—C7—C8—C11	150.79 (10)	C8—C7—N1—C6	-11.34 (18)
O2—C7—C8—Cl2	86.69 (15)	O2—C7—N1—C2	-14.7 (2)
N1—C7—C8—Cl2	-89.46 (13)	C8—C7—N1—C2	161.25 (11)
N1—C2—C9—C14	-78.53 (17)	C17—C6—N1—C7	-63.04 (16)
C3—C2—C9—C14	153.41 (15)	C5—C6—N1—C7	175.21 (12)
N1—C2—C9—C10	101.51 (17)	C17—C6—N1—C2	124.65 (13)
C3—C2—C9—C10	-26.6 (2)	C5—C6—N1—C2	2.90 (16)
C14—C9—C10—C11	2.2 (3)	C9—C2—N1—C7	99.87 (13)
C2-C9-C10-C11	-177.88 (17)	C3—C2—N1—C7	-126.77 (12)

C9—C10—C11—C12	-0.7 (3)	C9-C2-N1-C6	-	87.43 (14)
C10-C11-C12-C13	-0.8 (4)	C3—C2—N1—C6	4	5.93 (15)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C14—H14…O2	0.93	2.57	3.250 (2)	130
C2—H2····O2 ⁱ	0.98	2.50	3.4264 (18)	158
C16—H16A····O2 ⁱ	0.96	2.54	3.413 (2)	151
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$.				

Fig. 2